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Abstract-—A general stochastic theory of the elastic properties of composite materials with con-
tinuous randomly curved spatial reinforcement is developed. The theory of random functions is
utilized to evaluate the probabilistic characteristics of the local waviness of the reinforcement. A
probabilistic extension of the orientation averaging model is developed to evaluate the elastic
response of composites with multidirectional reinforcement having stochastic waviness. One fun-
damental advantage of the developed theory, compared to existing analytical approaches, is that
an exact description of the reinforcement waviness is not required for predicting elastic properties.
The only essential characteristics used as input data are the mean reinforcement paths and standard
deviation of the local tangent, which is a random value characterizing the reinforcement path
deflection from the “*perfect” one.

It is shown that existing approaches for evaluating elastic response of the composite with
imperfect continuous fiber reinforcement can be obtained from the developed theory as particular
cases. The theory is illustrated with examples of a unidirectional composite and a helically wound
composite with randomly curved reinforcements. Numerical examples show that even small local
waviness of the reinforcement paths may significantly affect the elastic response of composites
considered. © 1998 Elsevier Science Ltd. All rights reserved.

NOMENCLATURE
a®? VECtor = €] ;¢
b second-order tensor = (9e[/3F) i~ s
b unit vector normal to the tangent of the mean reinforcement path
& third-order tensor = (3%e}/k 1) i — s
C fourth-order stiffness tensor
Ciur components of the stiffness tensor
C column-vector which elements are components of the stiffness tensor
€; global orthonormal basis
e; local orthonormal basis
€ directional cosines = e; - e,
e set of local basis vectors = {e/,e},€}}
i second-order identity tensor
Kyx covariance tensor = (X ® X}
(L®%  length of the mean reinforcement path
n unit vector normal to tangent of the mean reinforcement path
r position vector of the reinforcement path
S fourth-order compliance tensor
St components of the compliance tensor
S column-vector which elements are components of the compliance tensor
Ry compliances of a unidirectional composite with straight fibers referred to principal axes of the material
t unit tangent vector of the mean reinforcement path
14 total volume of the composite
V,, total matrix volume in the composite
v, fiber volume fraction
X; global coordinates
Q® set of stochastically identical reinforcement paths
8 Levi—Civita tensor density
wo relative volumetric fraction of the kth subcomposite
13 Dirac delta function
&y Kronecker delta
a stress tensor
oy components of the stress tensor
& strain tensor
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& components of the strain tensor

D set of the coordinate functions in canonical expansion of the stochastic reinforcement path
A an arbitrary vector not parallel to the tangent line of the reinforcement path

0 local deflection angle

Gy standard deviation of the deflection angle of the reinforcement path

running parameter of the reinforcement path

Special notations

(X mean of random function X

X centered random function = X - (X}

XX first and second derivatives with respect to the parameter &
X-Y scalar product

X:¥ doubly contracted product

Xx¥ vector product

X®Y¥  outer tensor product

X7 transposed tensor

| X} norma = . /X-X

Notes:

Bold faced letter denotes a vector.
Bold faced letter with an overcap symbol *“"” denotes a tensor.

1. INTRODUCTION

Fiber curvatures and/or layer waviness are inevitable technological factors in composites
manufacturing, e.g. thermal processing, filament winding, braiding, weaving, stitching, etc.
Both curved fibers and wavy layers can significantly affect the composite material properties
and, consequently, the structural performance.

For braided composites, variations in crimp angle, braid angle, and local volume
fraction are intrinsic. While the above parameters are not mutually independent, the braid
angle is clearly the parameter which is most sensitive to the processing errors. Minor local
deviations in braid angle can occur as a result of variations in rotational/translational
speeds while braiding, handling of the material prior to impregnation, and resin infiltration.
Waviness and other imperfections can be relatively high. Usually, it is difficult even to
categorize the forms of imperfections exhibited by textile composites, let along to precisely
measure them all (Cox, 1995). Hence the development of probabilistic approaches aimed
at predicting thermomechanical response and sensitivity of composites having stochastic
reinforcement imperfections is an important issue from both scientific and engineering
standpoints. In a deterministic analysis, the effect of the reinforcement waviness and other
structural imperfections on the performance of composite materials have been studied
extensively using both experimental (Kuo er al., 1988 ; Clyburn, 1993 ; Chen et al., 1996)
and theoretical (Pastore and Gowayed, 1994 ; Liu and Xu, 1995; Gowayed et al., 1996;
Sun et al., 1995; Xu er al., 1995) methods. Probabilistic aspects of the problem are far less
developed. There are several optional approaches to study the effect of stochastic structural
parameters of the reinforcement on the composite performance :

e Monte Carlo technique.

e Direct formal averaging of elastic constants of a homogeneous anisotropic material.

o Application of the theory of stochastic functions for analyzing the response of the material
which includes reinforcement imperfections.

Monte Carlo approach is currently most popular; this is a rather universal tool, but
computationally very expensive. Monte Carlo technique was used by Pastore (1993) to
analyze effects of local variations in the reinforcement on the global stiffness variation of
textile composite. Another approach based on direct formal averaging (Chou and Takan-
ashi, 1987 Cox, 1995) assumes that the misalignment angle can be characterized by a
normal one-dimensional differential probability function (DPF) with the prescribed mean
value and standard deviation. Formal averaging of the corresponding deterministic equa-
tions with respect to the misalignment angle provides the mean values of the elastic charac-
teristics. In fact, this approach can be viewed as the extension of the methods developed
earlier for the analysis of composites with misaligned short straight fibers (Cox, 1952;
Cook, 1968). For the problems where values of random functions at various points of space
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do not need to be interrelated (like in the case of misaligned short straight-fiber composites),
the one-dimensional DPF is an adequate characteristic of the stochastic reinforcement
imperfections. However, the approach is not able to characterize spatial variations of
the imperfections. Apparently, a unidirectional composite with continuous wavy fiber
reinforcement represents the simplest example of the structure which cannot be adequately
characterized using the one-dimensional DPF.

The theory of random functions was applied by Bolotin (1966) to analyze laminated
medium reinforced with slightly curved elastic layers. It was assumed that the initial
waviness of the reinforced layers form a stationary stochastic field. The method of canonical
expansions has been used to derive the statistical characteristics of the stresses, strains and
displacements of the stochastic medium. The theory was used to explain experimentally
observed significant reduction of the elastic moduli of layered glass-reinforced plastics vs
theoretical predictions based on the assumption of “perfect” reinforcement.

In the present study, a novel stochastic theory of composite materials with continuous-
fiber reinforcements is developed. The spatial reinforcement path is treated as a random
vector function characterized in 3-D space by its mean value and covariance matrix. By
introducing local stochastic basis at any point along the reinforcement path and further
applying the series expansion technique, the mean value and covariance of elastic charac-
teristics of the composite material are expressed in terms of the mean value and covariance
of the reinforcement path. The theory assumes that the fluctuations of the reinforcement
path are rather small compared to the characteristic scale of its mean value. The final result
is obtained in terms of the second-order approximation of the mean and the first-order
approximation of the covariance derived for the elastic characteristics. Specific solutions
are then obtained for a unidirectional composite with wavy fibers and helical wound
composite. It is shown that the earlier results of Bolotin (1966) and Cox (1995) for
unidirectional composite with random waviness follow from the developed theory.

The theory is aimed at developing efficient analytical and computational tools for
stochastic problems of composite materials. The output of the theory, namely, the calculated
mean values and standard deviations of stiffness and compliance tensors of the material
provides the necessary input data for the reliability analysis of the composite structural
elements (Yushanov and Bogdanovich, 1998). It has to be emphasized that the issue of
obtaining complete and reliable input data needed for any kind of stochastic analysis of
composites still remains the major obstacle towards practical applications.

2. THEORETICAL CHARACTERIZATION OF A STOCHASTIC REINFORCEMENT PATH

2.1. Covariance function of the reinforcement path

Consider some arbitrary curve P, P, in 3-D space which will be called a *‘reinforcement
path”, Fig. 1. A set of orthogonal axes identified by symbols x,, x,, x; refers to the global
right-handed coordinate system. A triad of unit vectors {e}, i=1,2,3 is an orthonormal
basis of the global coordinate system, hence

e e =0, 1)

where symbol “-” denotes scalar (dot) product and J; is the Kronecker delta. The reinforce-
ment path P, P, is specified by a position vector in a parametric form

(&) = x,(Se; )

where ¢ is the running parameter. In particular, ¢ can represent the arc length of the mean
reinforcement path. As & varies from &, to &, the end point of the position vector r($)
traces out the reinforcement path from point P, to point P,. Summation convention is used
in eqn (2). Namely, every letter index appearing twice in one term is regarded as summation
index.
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Fig. 1. Global coordinate system, {x,, x;, x3}, and local basis, {e}, related to the stochastic reinforce-
ment path P,P,.

An arbitrary reinforcement path can be represented by a canonical expansion (Puga-
chev, 1965) of a random vector function which defines the curved reinforcement path as
follows :

r(E) = ®(?) +§ Veo(®). ®)

Here @((£) is some prescribed deterministic vector-function, {¢,(£)} is a set of deterministic
coordinate basis functions, and {V,} is a set of orthogonal zero-mean random values.
Expansion (3) decomposes r(&) into a purely deterministic component and a purely random
component. The random component of r(£) is completely identified by the distribution
densities of the coefficients V,. However, it is more convenient to use numerical charac-
teristics (moments) of V, instead of the distribution densities. The fundamental properties
of a random function are characterized by its first- and second-order moments, which are
customary in most of the practical applications. The moments are defined as follows :

<r(&)> = Do (D)

Ra(60) = RO @ BE+0)> = i Ve ® Voo ou(©oe(E+0) @

where (&) = r(&) —<r(&)>, and symbol “® " denotes outer tensor product. Function {r(£)>
is called the mean (or mathematical expectation) of r(¢), and the second centered moment
K.(¢,¢) is the covariance function. Matrix form of the covariance function of the stochastic
vector function is as follows:

Kox(&6) Kin(60) Ky (0
Ko (&, 0) = K, (&9) K x(C,0) (5)
symm K, . (&:0)

where K, . (¢, ¢) = {X(£)%,({ +¢) . Further, covariance of the first derivative of the function
r(¢&) is defined as
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K. (£,0)

where (&) = di(£)/d{. From the geometrical standpoint, i(£) is a local tangent to the
reinforcement path.

2.2. Local stochastic basis

A triad of unit vectors {e;} at any point along the stochastic reinforcement path form
a stochastic local orthonormal basis. If unit vector e is selected as the tangent vector of
the reinforcement path, then orientation of the other two unit vectors, e, and e, can be
chosen voluntarily. For example, the unit vector e’ can be directed in the plane which
contains vectors A and e, where 4 is an arbitrary unit vector (i+4 = 1) ; the only condition
is that 4 x e/ #0. This defines uniquely a local stochastic orthonormal basis :

L ORI §.3.(3)
PTURHOIT TP AxEQ@

e; = e} xe5. (7

The singular points where [F(¢)| = 0 are excluded from the consideration. The stochastic
coordinates of the local basis are then obtained as the stochastic directional cosines, e},
between the local and global axes. For example, ¢}, = e} -e, = x,(&)//x3 +x2 + %3 is the
directional cosine between the local unit tangent vector e and global axes x,, etc.
Equations (7) uniquely define directional cosines of an arbitrary reinforcement path
specified by the position vector eqn (2). The local basis is thus, tied to each point of the
reinforcement path, and since fibers are stochastically curved, the local basis has stochastic

orientation.

2.3. Expansion of the local stochastic basis vectors

To obtain the mean and covariance of the local basis related to the stochastic reinforce-
ment path, an expansion procedure of the local basis about the mean local tangent line is
applied. In the developed procedure, the vectors e5 and e’ are expanded into Taylor’s series
about all of their arguments. Expansion of the local basis vectors eqn (7) into Taylor’s
series about the point f = {i) yields:

oe; L 1 o%e; |
B, T

e = e+

HE—<) @F D)+ ®)

F= (P>

Here, notation ““:” for doubly contracted product is used. Recall that the doubly contracted
product reduces the order of the resulting product by two.

The first three terms of expansion eqn (8) play a significant role in the analysis. The
first term represents directional cosines of the mean reinforcement path. The second term
defines covariance properties of the local basis. The third term provides correction to the
mean value of the directional cosines due to assumed random fluctuations around the mean
reinforcement path. Evaluation of the coefficients in eqn (8) yields

’ i N 2 Al .2 4
e =a%+bh? F+587: 1 @1 )

where F(&) = F(&) — (i(&)) is the centered stochastic tangent vector to the reinforcement
path. Coefficients a® = ej(F) |;~ are respective vectors of the local basis evaluated at

r=d{:
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w _ S
YO
@ _ AxLE)
[4 x <i)]
a¥” =a xa®. (10)

Obviously, a is an orthonormal triad related to the mean reinforcement path, and a" is
the tangent unit vector of the mean reinforcement path. Coefficients b = (de/(i)/0F) |;~
are the second-order tensors expressed as

B — I—a ®a®
B
B = p+a'® ®s
|4 x CE)]
B = a® % D —a@ « (1)

where s = A xa®, p = A x1is the second-order tensor, and I is the second-order identity
tensor. Finally, the coefficients 8 = (0%/()/0f Ot) |;— 4, are the third-order tensors defined
by the following relations

. A" @T+I@a" +@" @) +3a) @a’ @a?
¢ —_

I<E>)?
& = PRs+HERP +a? @Bs®s+A® A1)
14> <E))?
8 = g 5 gD _ @ x ah +(B(1)TXB(Z))T_(B(Z)TXB(I))T_ (12)

It should be emphasized that operation of the transposition applied to the third-order
tensor transposes the first two indices in a tensor. The following identities have been used
in the derivation of eqns (11) and (12):

i < 1 i 1 :
a(}'?(r)——-kxl, i(__)z_a__r_, g( ):a ixe, , (13)
OF or Irla |i.lm+2 or Mxi.la |)»Xi'|a+l

where o > 0. Details of the derivations of eqns (11) and (12) are given in Appendix A.

2.4. Mean and covariance of the local basis vectors
Averaging of eqn (9) provides the second-order approximation of the mean basis

ey =a? +180: F @ ). (14)
The term <F ® ¢ is the covariance of the tangent vector along the reinforcement path ().

This is defined, according to eqn (6), as Ki(¢, &) = (HE) ® §(£)> = K, (& &). Hence, the
mean values of the local basis vectors are expressed in the form

Cefy = a9 +189 1K, (2, 8). (15)

The centered local basis is of the form
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e, =e —<e>=bh"-f (16)

Thus, the first-order approximation of the covariances of the local basis vectors is obtained
from eqn (16) as following

@ @&y = b Ko (8. &) (b7 a7

For the further convenience, the nine-component vector of directional cosines
e = {e’l,e’z,e;} is introduced. Then, the covariance K, of the local basis vectors can be
written in the matrix form as

&) ®e))> (e)®er) (e Dey)

Kee = ®e¢) = &, ®ey)y <& ®esrd|. (18)

symm €, ®e;)>

Each element of eqn (18) is 3 x 3 submatrix defined by eqn (17).

3. EVALUATION OF THE MEAN AND COVARIANCE OF THE STIFFNESS AND
COMPLIANCE TENSORS

Stiffness, C, and compliance, S, are fourth-order tensors defined by constitutive
relations of an anisotropic material

6=C:3 8=8:8 (19)

where 6 and # are second-order symmetric stress and strain tensors, respectively. In the
component form, constitutive relations eqn (19) take the form

Uij = Cl'jkl£/k9 gl'j = ijklo.lk([aja k7 l = la 2’ 3) (20)

Stiffness and compliance tensors referred to the “global™ coordinate system are related to
the stiffness, C’, and compliance, S’, tensors referred to the “local” coordinate system
through the following tensor transformation law

’

7 7’ ’ ’ ’ - 4 s ’ ’
Cl:/k[ = Cmnopemienjeokepla ‘Sijkl = Smnopemienjeukepl' (21)

It is suitable for the forthcoming derivations to represent stiffness matrix related to
global coordinate system in a column-vector form C = {C,;;, C\ ;2. ...}". For a generally
anisotropic material, vector C has 21 non-zero, independent components. Analogously, a
21-component stiffness column-vector C' = {C%;,,,C}22,-..}  related to the local coor-
dinate system is introduced. According to eqn (21), each element of the column-vector C
is the function of the components of the vector ¢’ = {e],¢5, ¢4} ={e},, €1, €}3, €3, €52,
€43, €51,€42,€53,) and the components of the stiffness vector C’. The functional relation is

symbolically written as:
C = C(C,¢). 22)

Here and henceforth we assume that the local stiffness, C’, is deterministic. However, since
any local basis is stochastic, the global stiffness vector C is a stochastic one. Defining
probabilistic characteristics of its components is our next objective.

To evaluate mean and covariance matrix of a stochastic column-vector C, the power-
series expansion about the mean local basis is applied :
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C=Cly—er+ g—g o (e —<e D)+ % % e e =) R —{eD)+ .
(23)
By introducing notations
d© = Q(j: , 1O = aZ_c (24)
0€ |y - e oe’ o€’ |, _ o
and disregarding the small terms of order |e’— (e’ |* and higher, eqn (23) reduces to
C = Clo—cey +8© (€ —<e)) +1TO: (¢ — (&) @ (e’ — (D). (25)
Then, using eqn (25), the mean and covariance of C are obtained as
(C) = Clewce, +3F:Re (26)
(€®C) =4 Koo @), 27)

According to eqn (24), d© is a 21 x 9 array and f© is a 21 x 9 x 9 array. The components
of these arrays are calculated as

A 2
d© = oG, © — G
ij ’ > i ’ ’ -
0€) |o= e 0€; 0 |y _ (o

(28)

Similarly, the global compliance column-vector is introduced as S = {S,,1}, Sj12, ...} "
Its corresponding mean and covariance matrix are

(S) = Slomcer +31¥ : Kee (29)
<g ® g> = 4. Ke’e’ .(&(S))T 30

where I = (8?S/0¢’ 6e’) |¢ - e, and 4 =(3S/0) | (s

The mean (C) and covariance matrix (€ ® €) of the global stiffness tensor can then
be obtained by rearranging components of eqns (26) and (27), respectively, back to the
tensor form. Similarly, mean and covariance matrix of the global compliance tensor, <S)

and (S ® S, can be obtained by rearranging components of the vector eqn (29) and matrix
eqn (30), respectively.

Equations (26), (27) and (29), (30) provide the mean values and covariance functions
of the stiffnesses and compliances at an arbitrary point along the reinforcement path. The
averaging procedure over all of the reinforcement paths has to be next applied to evaluate
the stochastic elastic characteristics (mean and covariance) of the composite media.

4. GLOBAL STIFFNESS/COMPLIANCE AVERAGING

Consider some volume V of reinforced composite with arbitrary number of reinforce-
ment paths. Suppose that each kind of the reinforcement paths can be represented as a
countable set, Q®, all elements of which are stochastically identical. Superscript “k” will
be used to denote a particular set of the reinforcement paths. Each set is specified by
the stochastic position vector r®(¢). The reinforcement paths r®(¢) e Q* are defined as
stochastically identical if all of them are characterized by the same mean position vector
(€)Y and covariance matrix Kww(&, &) = 9 (&) @ #9(8)).
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Denote by V¥ the fiber volume fraction of all reinforcement paths belonging to the
set Q%. The total fiber volume fraction of all kind reinforcements in the composite is thus
V, =X, V. A new object of consideration, to be called a ‘“‘subcomposite” is now intro-
duced. The kth subcomposite is defined as a set of stochastically identical reinforcement
paths surrounded by some amount of the matrix material. The total amount of matrix
distributed among the subcomposites is defined according to the following rule: matrix
volume V% attached to the kth subcomposite is V' =V, (V¥/V,), where V,, is total
matrix volume in the composite. The consequence of this assumption is that the fiber
volume fraction in each subcomposite is the same as the fiber volume fraction in the overall
composite. The deterministic analog of this assumption has been introduced and analyzed
by Kregers and Melbardis (1978), Kregers (1979, 1982).

Volumetric averaging of the stiffness tensor over all sets of stochastically identical
reinforcement paths gives the following expression of the total stiffness of the composite :

k

o 1 ~
Claven — _ Z J‘ CHdp® 3D
V yiky

where C® is the stiffness tensor of the kth subcomposite and ¥* denotes the volume of the
kth subcomposite. Volumetric integration in eqn (31) can be reduced to the line integration
along the mean reinforcement path:

Ctaven — z e j C® qLwy (32)
X G

&

where p® = V® /3, V® = ¥/ is the volume fraction of the kth subcomposite, d{L*

= /P> (P> dE is the element of the arc length of the mean reinforcement path
corresponding to the kth stochastic reinforcement set, and (L®) = {§ /(F®D> - (i) d¢&
is the length of the kth mean reinforcement path. If parameter £ is the arc length of the
mean reinforcement path, then |(i*>| = 1 and d{L%) = d¢.

According to eqn (32), the total stiffness is obtained as the superposition of the
stiffnesses corresponding to all individual sets Q* of the reinforcement paths. Hence, no
interaction (in the stochastic sense) between the reinforcement sets is taken into account in
this theory. The mean and covariance of the averaged stiffness tensor of the composite are
thus evaluated as

<C(aver)> = Z:“(k) J <C(k)> d<L(k)>
k G

Loy

<é(aver) ® é(aver)> — Z l’t(k) <L](k)\AJ~ ) <(9i‘(k) ® é(k)> d<L(k)> (33)
k 7 Ja®)

where (C®> and <(g,‘(")®(23("’> are expressed by eqns (26) and (27) for each specific
reinforcement path r®(&).
Using similar considerations, the compliance averaging approach results in

1
(LY

Gaver) — Z ﬂ(k) J‘ S d(L®y 34
% @y

where S® is the local compliance of the kth set subcomposite. Then the mean and covariance
of the averaged compliance tensor of the composite are
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Seaveny — k) _
S =Y

g *)
‘(L(k)>.f<r‘*’><s PAET

2 2 1 2 2
<S(aver) ® S(aver)> — Zu(k) B <S(k) ® S(k)) d<L(k)> (35)
£ (LW Jawy
where (§®> and (é“" ® é‘“) are evaluated by expressions eqns (29) and (30) for each

specific reinforcement path r*(¢).

5. APPLICATIONS OF THE THEORY

Several examples illustrating how the above theory applies to some typical reinforced
composite systems are considered in this section.

5.1. Covariance function and deflection angle

The main fundamental characteristics (mean and covariance functions) of the stoch-
astic reinforcement path are uniquely defined by the stochastic curve specified in the
parametric form eqn (2) or in the form of the canonical expansion eqn (3). Eventually, this
direct characterization of the reinforcement path may address specific features of the
composite manufacturing ; also, some additional a priori assumptions are made.

An alternative approach is to specify the mean value and covariance function of the
reinforcement path without using its explicit functional definition of the form eqn (2) or
(3). Specifically, local fiber waviness (due to crimping, braid angle variation, nonuniform
thermal deformations during manufacturing, etc.), is, generally, characterized by two inde-
pendent parameters—dispersions of the local tangents. The dispersions affect the mean
values of elastic constants and their standard deviations. Apparently, this approach opens
new possibilities for the effective analysis of elastic properties of composites with locally
curved fibers. Indeed, in the existing deterministic approaches, it is necessary to analytically
specify exact shape of the fiber waviness (see, Naik and Ganesh, 1992 ; Naik and Shembekar,
1992 ; Shembekar and Naik, 1993 as an example). According to the developed stochastic
theory, exact characterization of the fiber waviness is not required. Only the integral
characteristics, namely dispersions of the local tangent are needed to evaluate elastic
properties of the composite. However, additional information concerning the local path of
the reinforcement will become necessary if higher moments are utilized in the stochastic
analysis. Nevertheless, the developed second-order analysis seems to be sufficiently accurate
for most of the practical applications since the variation of the local tangent is usually
small.

In the framework of the developed theory, both the above approaches are equivalent
and lead to identical final results. This is further illustrated by a simple example of the
unidirectional reinforcement along the x, direction with local stochastic imperfections in
the x,—x; plane. The reinforcement path is characterized as follows:

I

¢
Xy = %2(S) (36)

2

X

where x,(¢) is some stochastic centered function. Denoting the angle between local tangent
to the reinforcement path and x,-axis by 8 (Fig. 2), the definition of the covariance function
provides the following expression :

dx, dx;,

K6 6) = (D39 = < > = (tan’ 0. 37

For the deterministic path, angle 6 is constant at each point. Let us consider a set of
realizations of some stochastic reinforcement path. Here, “deflection angle™ is defined as
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|

Fig. 2. Unidirectional composite (a) and schematics of local stochastic curvatures along the x,-axis

(b).

the angle between the direction of the perfect reinforcement and local tangent to the
realization of the stochastic reinforcement path. Obviously, deflection angle at each point
of the stochastic reinforcement path is a random value fluctuating about its mean. If § « 1,
then tan 6 ~ 6, and eqn (37) reduces to

K5, (.8 ~ aj (38)

where o} is standard deviation of the deflection angle. After substituting expression (38) in
eqns (15) and (17) and applying the above methodology, elastic response of the composite
with stochastic reinforcement can be evaluated in the explicit form. Therefore, the theory
developed in Sections 2-4 can be utilized even without full description of the stochastic
reinforcement path : it is sufficient to only specify the mean reinforcement path and standard
deviation of the deflection angle to obtain the mean values and covariance functions of all
elastic characteristics of the composite material.

Exactly the same result can be obtained if using explicit form of the stochastic imper-
fections of the reinforcement path. As an example, these imperfections can be taken as

x =<

x; = Acos(ké—i) (39)

where 4 and  are the amplitude and phase of the reinforcement imperfections, respectively,
x = 2n/L, and L is a characteristic length. Assuming that 4 and/or ¥ are random values
with some prescribed probabilistic distributions, one obtains the model of the reinforcement
path with local stochastic deviations in the x,—x; plane. For example, random-phase model
(Chou and Takanashi, 1987) follows from egqn (39) if A is a deterministic value and
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Y e[0,2n] is a uniformly distributed random value. This corresponds to the stochastic
fluctuations with zero mean and with the covariance function

2

A
szxz (és C) = 7COS K(é - g) (40)

A more general model is obtained from eqn (39) if one assumes that A4 is a random value
with zero mean and standard deviation & ,. Then, the covariance function of the derivative
of the reinforcement path is given by

Ko (6:6) = 2 cos (e —9). @n

The cosine front factor group in eqn (41) has clear geometrical interpretation. Indeed,
comparison of expression eqn (41) taken at £ = ¢ and expression eqn (37) yields

K20%/2 = (tan® §>. 42)
Hence, eqn (41) can be written in the form
K., (& c) = {tan® 8 cos k(¢ —¢). (43)

The most suitable approach of specifying the stochastic reinforcement depends on
available technological and experimental information. Apparently, the approach based on
prescribing the covariance function of the type eqn (37) is simpler and more suitable since
this does not require the knowledge of all the particular details of the reinforcement
imperfections.

Our next goal of this section is to show how to specify stochastic imperfections of the
general type of 3-D reinforcement using only the standard deviations of the local deflection
angle.

Let us specify local orientation of the mean reinforcement path, {r(&)>, by unit tangent
vector, t, and two mutually orthogonal unit vectors, b and n, both orthogonal to t. Assuming
that at each point & of the reinforcement path there are some stochastic deflections of the
path which are characterized by centered position vector (&), it is convenient for the
purpose of the forthcoming analysis to expand the fluctuations of the position vector into
two orthogonal components:

i(0) = 5(Ob+X,(On (44)

where x,(&) are random deflections in the plane t-b and x,(£) are random deflections in the
plane t-n. Deflection values in the planes t-b and t—n are designated by A4, and A4,.
respectively. Both of them are random values. This separation of the general form of
deflections is illustrated in Fig. 3. The triad {t,b,n} can be associated, for example, with
the principal directions of the unidirectional composite having straight-fiber reinforcement
in the direction t. For the case of unidirectional lamina, function x,(£) describes the in-
plane waviness and function %,(&) describes the out-of-plane waviness.

By identifying parameter ¢ as the arc length of the mean reinforcement path, the
covariance of the reinforcement deflections and their derivatives along the mean reinforce-
ment path in the basis {t,b,n} are written as the diagonal matrices
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Covariance
ellipse

Fig. 3. Local unit vectors, {¢, b,n}, related to the mean reinforcement path and geometrical expli-
cation of decomposition of the stochastic fluctuations of the reinforcement path into two orthogonal

components.
0 0 0 0 0
Ky=0 K., 0| RKP=|0 K, 0 | (45)
0 0 Kx,,.x‘,, 0 0 K\':,,)'cn

The elements of the covariance matrices eqn (45) are expressed in terms of the standard
deviations of the deflection values and the deflection angles

K., = <45, KD, =<4 (46)
KQ, = {an’f,), K¢, = tan’0,> (47)

where 0, and 6, are the deflection angles in the planes t-b and t-n, respectively.

The developed theory is explicitly dependent on the covariance of the derivative, K,
of the reinforcement path. By applying the coordinate transformation to eqn (45), the
elements of the covariance matrix referred to the global coordinate system are derived in
the form

K. .= bb{tan’® 0,> +nn,{tan’ 6, (48)

where b, =b-e; and n, = n-e; are the directional cosines of the unit vectors b and n,
respectively. Equation (48) shows that the covariance matrix of the derivative of the
stochastic path is expressed in terms of the experimentally measurable characteristics,
namely angles 8;, 6, and the directional cosines of the assumed straight-fiber reinforcement.

5.2. Unidirectional composite with curved fibers
Unidirectional composite with reinforcement along the axis x, and random deflection
in the plane x;—x, is considered. The position vector for this case is given by

r(&) = {£,%,(9.0} (49)

where %,(£) is an arbitrary centered stationary random function. The tangent vector to the
reinforcement path is then given by



2914 S. P. Yushanov and A. E. Bogdanovich
#(¢) = {1,%:(9),0}. (50)

Mean and covariance of the tangent vector are:

0 0 0
<i.> = {1,07 0}9 Kﬂ' - 0 KXZ.\"Z 0 (51)
0 0 0

where K, ;, = {%,%,>. For the covariance function of form eqn (51), evaluation of the
mean of the local basis according to eqn (13) yields

<e/1> = {1 _%sz.kz’()’()}’ <e,2> = {0’ 1 _%K\"Z.\"po}’ <e/3> = {0,0, 1} (52)

Next we obtain closed-form expressions for the compliance matrix components fol-
lowing the methodology developed in Sections 2—4. It is customary in mechanics of com-
posites to use contracted notations for the stress, strain, stiffness, and compliance tensors.
Specifically, generalized Hooke’s law written in the contracted notations has the form:

[ o] [S1 Sh2 S5 Sis Sis S [e]
02 S22 Sas Sz Sas Sae &2
03 _ Saz Ssa Sis Sae €3 (53)
Ty Sas Sss Sue Va4
Ts symm Sss Sse Vs
L Te | L Ses | L 76

where S,; are components of the compliance matrix. Detailed explanation of the relations
between tensor notations and contracted notations of stresses, strains, and compliances can
be found, for example, in Daniel and Ishai (1994), Bogdanovich and Pastore (1996).

Dropping details of the derivations, the following final result for the mean compliances
is obtained from eqn (29):

(8110 = e 'S + K i €11 D281, + S%6)

(S12) = {e1107eh ) ST + Koo (Ke11 )P ST +<e52 028, — ey p<e2 ) S46)

(813> = (€1, )* ST+ K, S2;

(8227 = <€ )* S + Ky 1,<€220° (281, + S)

(823> = (€220’ 823+ K1, S5

(S33) =83

{844y = €508 + K, SSs

{Sss> =<1 >’ 855 +Kt2,\>2S24

(Ssey = €11 07<€22 ) S66 +2K,, 1, [2(<e} 1 D7 ST) + ey 27 85:) — el ) {eh: >(Sss +45T)].
(54)

Here, S are compliances of a unidirectional composite with straight fibers. There are
additional obvious relations: S9; = 8%, S, = 895, §9, = 2(5%, —S59;), and S%; = Sg.
The matrix form of the compliances S}, is written as
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St 1 Sh 0 0 07
§% 8% 0 0 0
. S% 0 0 0
[Si = 0 0 (55)
2(52,—-833) 0 0
symm S 0
L S

For the transversely isotropic material with the plane of isotropy x,-x;, there are five
independent compliance components and, accordingly, five independent engineering elastic
constants; those can be chosen as EY;, EYS,, G?., v¥,, v3;. The rest of the engineering
constants are then expressed in terms of the above five: EY, = ES,, G}, =G!,,
Gy = EL/[2(1+155)].

By using eqn (38), K, is further expressed in terms of the standard deviation of the
deflection angle 6 (see Fig. 2), using the assumption that 8 is small :

K. =<tan’ 0y ~ 0> = a;
Then, using this relation and substituting expression S = l/E}, S, = —(/E})

G,j=1,2,3), 82, = 1/G%5, S%s = 1/GY, S2 = 1/GY, into eqn (54), one obtains the fol-
lowing expressions for the mean values of elastic moduli :

E E!
LEE]Q =1—a [“GTI)L -2(1 +v?2)} (56)
11 12
E E} ’ E},
5§—2>= -0} [—?—»Z(I—f—v?z jﬂ (57)
EZZ G[g EII
E
Es _ (58)
ES;
shear moduli:
G GS
%—Z =1-0} (533 — 1) (59)
23 ) i3
G GY
<G1032 =1—a? (E“l —1> (60)
13 23
Gy, 142+ 1
IS D PRy [ O (it L SLIN I (61)
G(l)z E[l)l Egz
and Poisson’s ratios:
E} G,
(py = +ai [2@?2)2 —1+ E;% (1 —h= )] (62)
12 22

EY EY,
i) =vs+ap [v%(l +2viy) + f(“c—ﬂ (63)

22



2916 S. P. Yushanov and A. E. Bogdanovich

EO
{vay) = V33405 |:V(2):s (1+2V(2)|_G—z2)+"21]- (64)

1

Here, (E;>, {G;», and (v, are the mean values of the elastic moduli, shear moduli, and
Poisson’s ratios, respectively. All small terms of the order higher than o(¢)) have been
disregarded in the eqns (56)—(64).

For the composites with E9¢,/GY, » |, the relation eqn (56) reduces to {E; )/
EY = 1—03E},/G},. This expression for the mean longitudinal elastic modulus coincides
with the result obtained by Bolotin (1966). He derived this result considering reinforced
layers with small initial waviness forming a homogeneous stochastic field. Bolotin employed
the spectral theory of random functions for the analysis of layered media.

Cox (1995) analyzed the effect of local fiber waviness using the technique of direct
formal averaging of elastic constants of a homogeneous anisotropic material. He considered
an axially loaded wavy tow as a sequence of misoriented unidirectional composite segments
bearing equal stress in the load direction. The spatially averaged longitudinal elastic modu-
lus <E;,> of such a tow is given by

<E11>=

[ A0)doT!
_LEH@] (6

where E| (0) is elastic modulus of unidirectional composite under the load oriented at
angle 6 to the fiber direction x,. Assuming that f{f) is Gaussian distribution, closed-form
expression for (E,,) is obtained after performing the integration in eqn (65). The resulting
expression (see also eqn (23d) of Xu ef al., 1995) is exactly the same as eqn (56). Note that
Cox (1993) obtained closed-form solution only for the longitudinal elastic modulus, while
eqns (56)—(64) define all engineering constants. Besides that, eqns (56)—(64) do not assume
any specific form of the distribution law of the deflection angle.

Numerical results for the elastic moduli, shear moduli and Poisson’s ratios are shown
in Fig. 4. The results illustrate effect of the random fiber deflections for the unidirectional
composite with E,= 76 GPa, E,, = 4 GPa, v,= 0.28, v,, = 0.38 and fiber volume fraction
V,= 0.6. Two analytical approaches have been used: eqns (54) and closed-form solution
eqns (56)—(64). It is seen that for small standard deviations both approaches give very close
results. However, eqns (54) are applicable for a broader range of o, than eqns (56)—(64).
As seen in Fig. 4a, most severe effect is obtained for the mean value of the longitudinal
elastic modulus, <FE,,>. Particularly, at o, = 25° its drop is about 50%. Less significant
drop is obtained for the mean value of the transverse elastic modulus E,, in the plane of the
reinforcement deflection. Naturally, mean value of E;; is not affected by the reinforcement
deflection. As is seen from eqns (59)-(61) and Fig. 4b, all three shear moduli are affected
by the fiber curvatures. The values of {G,,) are significantly higher than G?,, which
corresponds to well-known effect of increasing shear resistance with higher fiber waviness.
The effect of fiber curvatures on the other two shear moduli is negligible. Finally, as Fig.
4c¢ shows, the curvatures significantly affect the mean values of all three Poisson’s ratios,
especially {v,,>, which is increased by 60% at g, = 25°.

5.3. Helically wound composites with curved reinforcement
Consider a cylindrical shell of radius R with a helical reinforcement, Fig. 5. A “perfect”
helical reinforcement path with the pitch length 4 can be represented as

2n
x(z) = Rcos (—h~z>

2n
X,(z) = Rsin (7 )
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Fig. 4. Elastic characteristics of the unidirectional composite vs the standard deviation, oy, of the
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IJ

s i

Fig. 5. Geometrical characteristics of the helix reinforcement path.

x3(2) =z (66)

where 0 < z < /. Helix angle 8 is related to the parameters R and 4 through the relation
tan 0 = 2nR/h. It is convenient to use the arc length for the parametric representation of
the helical reinforcement path. The arc length, ¢, of the helix specified by eqn (66) is defined
as

¢= L Q)+ 72+ dg = cozs 0 0

Hence, after changing variable z = £ cos 8, equation of the helix eqn (66) transforms to the
parametric form

X1(8) = Roos(wd)
x(&) = Rsin(w?)
x3(&) = £cosd (68)
where w =sinf/R and 0 < & < 2njw. Variation of the arc length over the interval
£e0,2n/w] corresponds to one complete turn of the helix. Note that the following nor-
malization relation is satisfied |F(£)| = 1; this relation is the consequence of using the arc
length as a parameter.
Helix angle # may have random local deviations due to various technological effects.
Cylindrical structures with perfect and imperfect helical reinforcements are shown in Fig.

6. According to eqn (68), local deviation of the helix angle, 40, results in the following
deflection of the reinforcement path:

ox, = —&cosPsin(wé)dh, ox, = Ecosbcos(wé)dl, ox, = —Esinbao. (69)

Considering 46 as a random variable with zero mean value, (68) = 0, and given standard
deviation g,, the stochastically imperfect helix reinforcement is characterized as follows:

r(§) = <r(&)>+¥() (70

where
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Fig. 6. Cylindrical wound composite with perfect {(a) and imperfect (b) helical reinforcement.

{r(&)y = {Rcos(wé), Rsin(wf), ¢cosw} (71)
is the mean reinforcement path representing “perfect” helix and
F(&) = {—&cosOsin(wé) 80, Ecosbcos(wé) o8, —Esinb oo} (72)

is the local random deflection. The derivative of the reinforcement deflection with respect
to the arc length is calculated as

(9]
oZ

HE) = = {5, 00,5, 00,5, 60} (73)

where

sy = [sin(wé) — wé cos(wé)] cos 8§
5, = [cos(wl) —w¢ sin{wé)] cos

sy = —sin6. (74)

Using eqn (73), the full covariance matrix of the derivatives of the local deflections is then
obtained as

57 818 815

Kﬁ(f,f) =0} 518 S% §283 | (75)

2

5183 8383 83

Equations (71), (74), and (75) are sufficient for applying the developed theory for composite
materials with the helical reinforcements. Vector A4 entering in eqns (10)—(12) was chosen
as A= (k&) x {F(£)) to ensure that condition 4 x {k(&))> # 0 is satisfied at every point
along the mean reinforcement path.

Numerical analysis based on the compliance averaging eqns (29), (30) and (35) was
carried out. The effect of the standard deviation of the deflection angle on the elastic
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characteristics of the wound composite with helical reinforcement is illustrated in Figs 7—
10. The results were obtained for Graphite/Epoxy composite with the following elastic
characteristics of the fibers (Fiberite®, 1995) : E; = 230 GPa, v, = 0.3 and matrix: E,, = 3.45
GPa, v,, = 0.35. Total fiber volume fraction is 0.6. The helix angle was taken § = +20°.

From the results presented in Figs 7-10, one can conclude that local random reinforce-
ment deflections cause significant change of both the mean values and standard deviations
of the elastic constants. Particularly, at a very moderate deflection angle, g, = 10°, the drop
of the mean value of the elastic modulus E; is 45% and its variation about the mean is
=~ 15% (Fig. 7c). The dependencies of the mean values of the elastic moduli £, and E,, on
the standard deviation of the deflection angle are much less conspicuous, as it follows from
Figs 7a and 7b. Namely, the drop of the miean value of E|; is only 2.6% and its variation
about the mean is 4% (Fig. 7a); the drop of the mean value of E,, is 4% and its variation
about the mean is &~ 10% (Fig. 7b). In fact, the standard deviation of the moduli E,; and
E,, overlap the drop of their mean values.

Shear moduli show different behavior: the values of (G,;> and {G;) increase when
increasing the standard deviation of the deflection angle. According to Figs 8a and 8b, the
mean values of G,; and G, increase up to 24 and 21%, respectively, at o, = 10° compared
to their values for the perfect helical reinforcement. Variation of G,; and G, is about 20%
at oy = 10°. The mean value of shear moduli G,, practically does not change with the
reinforcement waviness, but its variation reaches 7.6% at o, = 10° (Fig. 8¢).

The Poisson’s ratios are the most sensitive to the local waviness of the reinforcement.
Indeed, according to Figs 9a and 9b, the mean values and variations of v,; and v;; are
100+ 38% and 92+ 32%, respectively, at 6, = 10°. The dependencies of the mean value
and standard deviation of v,; are nonmonotone functions of the standard deviation of the
deflection angle (Fig. 9c). At small oy, the values of {(v;)> and g, , decrease reaching
minimum at ¢, & 7°. At ¢, > 7°, the mean value of v, and its variation increase with
increasing the standard deviation of the deflection angle.

Figures 10-12 show the dependencies of the elastic characteristics on the helix angle 6.
The results for the perfect helical reinforcement were obtained using the developed theory
at oy = 0. It can be noted that the same result can be obtained using analytical closed-form
solution given by eqns (13) and (14) of Byun and Chou (1995). The results for the imperfect
helical reinforcement with the standard deviation of helix angle o, = 10° are also presented
in Figs 10-12. The upper (e.g. <E);)+0z ) and lower (e.g. {E, ;) ~0g ) bounds of the
standard deviations of the elastic characteristics are plotted by dashed lines. From these
figures one can conclude that local random waviness cause significant change of both the
mean values and standard deviations of the elastic constants over the entire interval of helix
angle 0° < 8 < 90",

Two significant features of the elastic response of helical wound composites with
random reinforcement waviness should be pointed out. The first is related to the effect of
the helix angle deflection on the elastic symmetry. For the perfect helical reinforcement, the
elastic constants having indices 23 and 13 are identical : Fy; = E\;, Gy = G5, and vy3 = vys.
However, certain difference between the elastic characteristics having indices 23 and 13 is
revealed when accounting for the random waviness, i.e. when oy # 0. This effect can be
explained by the fact that the reinforcement deviations are not commutative with respect
to the indices 1 and 2. Indeed, according to the relations eqn (74), the covariance matrix
eqn (75) changes under the cyclic permutation of the indices 1 and 2.

Another peculiarity can be observed from the comparison of the dependencies shown
in Figs 10-12 with the corresponding dependencies presented in Fig. 4. Namely, the local
reinforcement waviness causes more severe effect on the elastic characteristics of the con-
sidered helical wound composite in comparison with the case of a unidirectional composite.
This effect can be explained by comparing the covariance matrices eqn (51) for the unidi-
rectional composite and eqn (75) for the helical wound composite. In the case of the
unidirectional composite, the covariance matrix has only one non-zero element. Hence,
variation of the elastic properties is the result of the variation of the deflection angle only
in one plane, specifically, in the plane x—z. For the helical wound composite, the covariance
matrix eqn (75) has a full form, and, hence, variation of the elastic properties is the result
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Fig. 7. Dependencies of the elastic moduli of helical wound composite on the standard deviation,
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dashed lines are the bounds of their standard deviations.
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of the variation of the reinforcement path in all three planes: x-y, x—z, and y—z. Apparently,
variation of the reinforcement path in all three planes causes more significant change of the
elastic characteristics than variation of the reinforcement path in one plane only.

6. CONCLUSIONS

e A novel stochastic theory of composites with continuous, multidirectional spatial
reinforcements having stochastic waviness, has been developed. The theory predicts
the elastic response using stochastic generalization of the spatial stiffness/compliance
averaging approaches. The input information required is limited to the mean and standard
deviations of the stochastic reinforcement paths.

e Existing approaches for predicting elastic response of unidirectional composites with
curved fibers can be obtained from the developed theory as particular cases.

o Closed-form solutions for composites with unidirectional stochastically curved fiber
reinforcements have been obtained. The numerical examples illustrate that the developed
theory can be readily applied for the analysis of various classes of composites with
multidirectional spatial reinforcements, taking into account random reinforcement
waviness.

o The developed stochastic theory provides a powerful analytical tool for the elastic analysis
of various types of imperfect composite systems with randomly curved reinforcement.
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APPENDIX A. COEFFICIENTS OF THE LOCAL BASIS EXPANSION

Diadic technique A
Diadic notation is used in the following calculations. Namely, the kth-order tensor X is represented in the
diadic form as

X=X, .®e¢. . Qe (Al)

Iil 'ik i|

where X, ; , are the components of the tensor X, and e, are the basis vectors of the global coordinate system.
Symbol ® denotes outer tensor product. As usual, the summation convention is used : every letter index appearing
twice in one term is regarded as the summation index. Using diadic representation, the operations of the tensor
algebra reduce to those upon the basis vectors:

e;"e; =, (scalar product) (A2)
e, xe; = g, e, (vector product). (A3)

Here, &, are the components of the Levi—Civita tensor density, defined as follows: ¢ is skew-symmetric in its
three indices ; therefore, all those components which have at least two equal indices, vanish. The values of the
nonvanishing components are + 1, the sign depending on whether (i, /, k) is an even or odd permutation of (1,2, 3).

The identities eqn (13) can be readily obtained using diadic technique. The first identity of eqn (13) takes the
form

a(l X l') _ a(eimn)-mxn)
oF ax;

e®e =tpd,d,e Qe =Axl (A4

The second identity of eqn (13) is written as

J (1 0 A o 0%, . 0%, o .
= =€ (X,%,) = —— T Xt Xy €= — 20 X
o PE 0x; 202 0x; ax; 2e+?

1y

K= (AS5)
|i_|u+ 2 Ii.'a+l

Finally, the third identity of eqn (13) which will be extensively used in the forthcoming derivations is obtained as

] 1 2 . L o 0 e
5l =) = ke 8 diXe) T e = = e BB A AR X )
T\ dx/ o 2ix it 0%
o . . & niEmstAn s Xt F EmppBnsiAn s X,
-_ - gmnpsmslln/\vs(()plxl+o“’xp)el — ( 'mniCmstnsvgve : n:—n; msi’n’ts P) e‘
2|A+E|*F 2{A xi|*
acmnismjllnisxi Eimn (e,,,,,itsx,)i,, (l X i‘) x A l X e/z
= — e = —u € = —a =u . (A6)
“'Xi.‘nwz M-Xi'l‘ﬂ'z |},Xi‘|“+2 leﬂm-ﬂ

Coefficients of the expansion of the basis vector €
Differentiation of the first basis vector of eqn {7) with respect to t yields

“e.—"=—a.—(x—'>e,-®e,=(l o 5'”)e,®e_,=(ﬁ—ﬁ>e.®ef=li t®F A7)

Sl R L L —
oF 9%, \lK| |H 0%, T ox; L/ i g

Repeated differentiation of the relation eqn (A7) results in
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a1 atky)  a
Tox P on o

e, 0 <5,,. %%,

ﬁ=a ———)e,@ej@)ek: (6

| ¥ )e,@ev,®ek

_ (_ 8%+ X0+ X0, . 35‘"*-”"")@ ®e,®e = - I®i+i® i+(f®i)’+ HQERE

. (A8)
i’ I’ i’ H°

Evaluation of the eqns (A7) and (A8) at i = <k) yields coefficients b’ and & in eqns (11) and (12), respectively.
Coefficients of the expansion of the basis vector ¢,
Employing the relations eqns (A4) and (A6), the derivative of the second basis vector with respect to I is

derived as

de 1 8(axp daxi  AxI  (AxD®@AxixA)

== AXF = _
a “axd a TP TH Tk il
Axf—e; @(e; xA)
= TAxi] (A9
The coordinate form of the eqn (A9) is
oe’ 1 - 1 , .
Fr (’ Ty Eipun D Oy — m(s,plﬂpr)s,mn(sm.ﬂ..‘.x,)&) e®e, (A1)

By differentiating both sides of eqn (A10), one obtains

d%e o Axi!

~ daxi=
G- 15 -

(A ®UXExA)®

ar 7 .13 (ﬂiplipﬁik)ejmn(sm,\-risx:)inex Re e
xXr

1 <
- I—i—.l}(ﬂip/l,,xz)sm s dsOu)dne @€, @ e (All)
Xr

The first, second, third, and fourth terms in the right hand side of eqn (All) are denoted by Z,, Z,, Z;, and Z,,
respectively. The first two terms, Z, and Z,, are derived using eqns (A6) and the definition of the basis vector e3,

see eqn (7):

v o CAxE) <i Ax e

Z, = axi@—= (A12)
! o “'xi.lz
3ixes 5 ® (4 xe; i x e
Zy = XD @Uxixd) @ X8 _ ;8 ®Uxe) @@xes) (A13)
[AxE1 [Ax ]2
After introducing notations § = 2 x e; and p = 4 x I, the term Z; is written as
BprhpOn  Bshs X, P
Zy= -, e @ Qe = — Eimeonin)e ® € ® &
3 |},Xi]2 *Ji Mxﬂ 2 k H,xi'|2(’ 2 ) i k
i S §5®@P9)7
= —P"—(s,nmfl,,e’zm)e,- Qe ®e = LIRS e, ®e = Ll
I4 x £|2 |Ax i|2 [A x|
’ ™7
_(Gxe)@Ax) _ (A14)
|4 x i|?

Taking into account the identity g, = 8,0, — 8,0, and recalling that 4 is a unit vector, the fourth term in eqn
(A11) is derived as

1 g% eh;
ipl"op-+1 2

- e A EimmBmsOuchs A€ @ € @ €, = —~u : Eimnbmsi s A€ D €, ® €
x I xF

2=

. 308,50 — 8 Bn) i
= —e—z—‘—ejnmaskm,{,).ne; Qe RDe = M"u*— e®e e
JAx i 4% i]?
_ Ot A) oo e, = 2 @ED D (A15)

|4 xF? jA x|

Substitution of eqns (A12)—(15) into eqn (A11) results in
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ey AxI@ixes+3e; ®Uxe) @Uxe))+(dxe; @ixD) +e, @U®A-T)

(A16)

Equations (A9) and (A16) evaluated at t = (i) provide coefficients b® and & entering in eqns (11) and (12),
respectively.

Coefficients of the expansion of the basis vector €}
Recalling definition of the coefficients in the expansion eqn (9), namely,

. de, de,
) _Yem _ A m _
a" =e, L., = @™, b= 5 =b"e, @e;, &= 3o =clle, Qe @ e (A17)
=t Tl

the expansion coefficients of the third basis vector are evaluated as

e’ O(8in€ m€n) oe' Oe’,
a3 3 imn€ 1m€ 20 L 20
b = - = € ® € = | & =" €20+ Enin 5 e ®e
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=ah x b —a® x p (A18)
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